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The Problem of Multiple Inference in
Identifying Point-Source Environmental
Hazards
by Duncan C. Thomas*

Point-source environmental hazards are often identified by examination of unusual clusters of disease
cases. The very large number of potential clusters give rise to the statistical problem of "multiple infer-
ence," i.e., the more clusters examined, the greater the risk of "false-positive" associations emerging by
chance alone. This paper first distinguishes the situation of clusters identified by anecdotal observation
from those that emerge from systematic searches. The latter may or may not include a systematic enu-
meration of potential causal factors associated with each potential disease cluster. If exposure information
is not systematically available, empirical Bayes procedures are suggested as a basis for ranking the observed
clusters in order of priority for further investigation. If exposure information is systematically available,
empirical Bayes procedures can be used to select associations to report or to rank them in order of priority
for confirmation. In addition, procedures are described for testing the global null hypothesis of no ex-
posure-disease associations and for estimating the number of true-positive associations. These approaches
are advocated in preference to classical frequentist approaches of multiplying p values by the number of
tests performed.

Environmentally related diseases have become a ma-
jor concern to the public and headlines are made almost
daily. The large number of claims requiring some kind
of response from public health officers raises new chal-
lenges for which the epidemiologic community has yet
to formulate any systematic or widely accepted solution.
The natural conservatism of the scientific discipline,
arising from the conventional requirement of a high de-
gree of statistical significance and the low credibility
scientists frequently attach to these claims, is often met
with cynicism by the general public (1). The scientific
approaches may not lead to appropriate responses to
the public health problem. The situation is further com-
pounded by the frequent failure to distinguish between
the kinds of statements that can be made based on an-

ecdotal evidence and those based on systematic study.
Finally, there is the lack of consensus among statisti-
cians about how to deal with the problem of multiple
inference in large scale exploratory studies (2).
The statistical issues of multiple inference for point

source environmental hazards are the subject of this
paper. The interpretation of an isolated anecdotal ob-
servation is discussed first. Next, approaches to sys-
tematic examination of clustering behavior in the absence
of exposure information are described. Finally, the
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problem ofmultiple inference in studies ofmany possible
exposure-disease associations is addressed.

Investigation of an Isolated Cluster

Reactive Epidemiology
On September 17, 1981, the Montreal Gazette carried

a lead headline alleging that a particular street in the
district of Chomedy, Quebec had suffered an "epidemic"
of cancer, strongly suggesting an unspecified environ-
mental cause. In the ensuing furor, Dr. Walter Spitzer
of the McGill Cancer Center was commissioned to carry
out an epidemiologic survey of the area to determine
whether there was in fact an excess of cancer and, if
sustantiated, to explore possible causal factors.
The methods used-careful definition of the popula-

tion and period of time at risk, selection of suitable
control populations, complete ascertainment of cases,
confirmation of diagnoses, etc.-were all part of stan-
dard epidemiologic practice and have been described
elsewhere (3). No unusual excesses were in fact ob-
served. An important use of epidemiology is the proper
documentation of whether or not a disease excess in fact
exists. Properly done, such a study can relieve unnec-
essary anxiety or show clearly the need for study of
causal factors or intervention.

Several statistical issues require consideration, how-
ever. First, how widely should one define the population
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at risk and the period of time? Second, should one in-
clude the observations which led to the investigation?
Finally, how are statements of statistical significance to
be interpreted?
The first two questions are closely related. Com-

monly, as in the Chomedy scare, neither the geographic
area nor the period of time are well defined in the initial
reports. The epidemiologist must weigh several conflict-
ing considerations. First, one must decide whether the
purpose of the study is to determine the truth of the
claimed excess or to determine whether the excess is a
reflection of a more general phenomenon. If the former,
then it would be pointless to exclude the initial obser-
vations, and expansion of the area or time period too
widely would risk diluting any excess. On the other
hand, if the purpose is to look for a general phenomenon,
then the initial observations must be excluded in order
to obtain an independent replication. In either case, if
the suspected causal factor is localized in space, then
the study population should be similarly localized. If it
is localized in time, then the period of ascertainment
should not predate the exposure (except perhaps for
comparison purposes), and it is likely that prospective
observations will be required for testing the hypothesis.
If the cause is unknown, then both space and time must
be defined widely enough to allow a reasonable range
of comparisons. Finally, the investigator must consider
sample size limitations: no excess, or lack of excess, is
convinving if based on only a few cases.
The interpretation of claims for statistical significance

is more subtle. It is unlikely that a study would have
been carried out had the initial observations not given
some grounds for concern. Hence, if these observations
are included in the study data, the probability of a "sta-
tistically significant" excess, even if the null hypothesis
is true, is certainly larger than the claimed significance
level. This liberal bias arises out of a nonrandom selec-
tion of study population (i.e., the inclusion of a subpo-
pulation in which it is known in advance that an excess
exists) and does not arise if the initial observations are
excluded. It may still be helpful to make significance
statements, but their proper interpretation is as follows:
"An excess of this magnitude or greater would be ob-
served by chance alone in alpha percent of clusters se-
lected at random; however, as the present cluster was
not selected at random, the probability that such an
excess would have come to attention by chance alone
cannot be assessed." (It is worth noting that a similar
liberal bias affects the reporting of findings in the sci-
entific and lay press generally, thereby making it dif-
ficult to combine all the evidence in interpreting any
particular association.)

Analytical Epidemiology
If a sufficiently large excess does appear to exist, the

obvious next step is a search for possible causes, per-
haps by correlational ("ecological") or case-control ap-
proaches. If enough factors are considered, it is probable

that at least one "statistically significant" determinant
will be found. Such factors deserve to be reported, but
unless they are stated as hypotheses in advance, bio-
logically plausible, and based on independent prior evi-
dence, most scientists would agree that action should
not be taken without independent replication.

Similar issues of multiple inference arise when the
starting point is a particular exposure factor (rather
than a particular disease cluster) and a variety of pos-
sible health outcomes are considered. These issues are
addressed below in the general context of systematic
explorations of associations between many diseases and
many exposures.

Systematic Examination of
Clustering Behavior
Most diseases will show more than random variation

in incidence rates because there are real regional var-
iation in risk factors or completeness of ascertainment.
Systematic studies of clustering can help put anecdotal
observations into context. Such variation can also be
useful for generating hypotheses. For example, the
"cancer maps" of the U.S. counties (4) have often been
used to generate hypotheses, either through systematic
correlation analyses (5) or through astute observations
of isolated clusters associated with particular exposures.

In order to identify the "high risk" clusters for further
investigation or to rank the clusters for correlational
analysis, one must adopt some parameter of excess risk
and some procedure for estimating it. On the one hand,
it could be argued that the most important clusters to
investigate are those most likely to represent causal
associations, and it is sometimes stated (6) that the best
single index of causality is the strength of the relative
risk (RR). On the other hand, it could be argued that
a more appropriate index for public health purposes is
the number of excess cases (the "attributable number,
AN). Whatever parameter is adopted, chance variation
must still be taken into account. A simple ranking of
clusters on their point estimates would take no account
of the strength of the evidence (as summarized in a p
value) whereas a ranking of p values would take no
account of the magnitude of the excesses. An ad hoc
compromise would be to rank some lower confidence
limit on the chosen parameter, but the choice of confi-
dence level would be arbitrary and different choices
would produce different ranldngs. Empirical Bayes (EB)
estimators (7) were developed to provide a unified ap-
proach to this problem. These refer to a system of sta-
tistical inference in which prior probabilities are
estimated from the data rather than specified a priori,
preferred estimates being those with the maximum pos-
terior probability. In contrast, the more commonly used
maximum likelihood (ML) estimates are based on a sys-
tem of statistical inference in which only information in
the data, rather than prior probabilities, are used, pre-
ferred estimates being those which maximize the prob-
ability (likelihood) of the observed data.
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ML estimators have the paradoxical property that,
though asymptotically unbiased for any particular as-
sociation, they are biased when considered as an en-
semble: the largest estimate, for example, is probably
an overestimate of its population value and the smallest
estimate an underestimate. Classical Bayes estimators
therefore pull each estimate ri back toward the center
of some "prior" distributionf(pi) by an amount that de-
pends on their variances si2, in order to obtain a "pos-
terior" estimate of the true population value pi. Empirical
Bayes procedures differ only in that the prior distri-
bution is not postulated arbitrarily but is fitted to the
data by specifying a parametric form flp1O) and esti-
mating its parameters 0. For example, suppose one as-
sumed that the observed numbers of cases Di followed
a Poisson distribution with parameter = Eipiwhere E,
are the expected numbers on a standardized incidence
ratio (SIR) or proportional incidence ratio (PIR) basis
using rates for the combined population, and pi is the
true relative risk to be estimated. The then natural
("conjugate") prior for pi is the gamma distribution (Ap-
pendix 1), with shape parameter k and scale parameter
-q to be estimated. These procedures offer two distinct
advantages for hypothesis generation. First, they pro-
vide an improved ranking of high-risk clusters, allowing
for differences in their random variability and in the
magnitude of their risks. Second, they provide an es-
timate of the true variability of the population rates
after removing the chance variation in the sample.
Some of the variability in population rates may be

attributable to known confounding factors. This varia-
tion can be removed in several ways. The simplest is
to stratify on these factors and carry out a separate EB
analysis in each stratum. A better approach would be
to start with estimates which were standardized for
these factors and combine all strata in a single EB an-
alysis. Finally, covariate information z could be added
to an EB analysis of nonstandardized estimates by al-
lowing the parameters to depend on z. For example,
again taking the prior distribution for pi to be gamma,
one might allow the scale parameter to depend on cov-
ariates, say -q = exp (a + bz), and estimate the regres-
sion coefficients a and b together with the shape
parameter k (assumed not to depend on z). This ap-
proach can sometimes be applied when standardized
estimates cannot be obtained, e.g., when only one ag-
gregate data on confounders are available, and is ex-
plored below as a way of incorporating information on
exposure.

Details of these approaches are described elsewhere
(8) with applications in a slightly different context,
namely, identifying cancer clusters associated with par-
ticular occupations or occupational exposures. In that
project, exposure information was available, so the study
became a systematic exploration of associations rather
than simply of disease clusters; these applications are
therefore described in the next section. Another im-
portant difference was the use of individual rather than
aggregate data, thereby avoiding the "ecological fal-
lacy" (9), that associations across aggregate units may

not reflect differences in risk between individuals at
different exposure levels.

It is worth repeating that distributions of clusters can
be helpful for putting particular clusters (e.g., those
exposed to a hazardous waste disposal site) into context,
but that such comparisons have straightforward inter-
pretations as statistical significance claims only if the
clusters being tested were selected a priori (i.e., by
exposure), not by the knowledge that they showed ex-
cesses of disease.

Systematic Exploration of Many
Possible Exposure-Disease
Associations
A question of greater scientific interest than the de-

scriptive problems discussed above is whether exposure
to hazardous waste disposal sites has any adverse effect
on health and, if so, which sites or which chemicals are
associated with which adverse outcomes. Suppose that
a series of population units have been selected, each
classified in various ways by exposure (e.g., whether
or not it is near any disposal site, whether near a par-
ticular site, whether the site contains a particular chem-
ical, whether it has contaminated the water supply, etc.)
and observed and expected numbers of cases of various
diseases ascertained. There would appear to be three
basic scientific questions to be addressed: (1) to test the
global null hypothesis that there are no true exposure-
disease relations; (2) if rejected, to estimate the number
of true-positive associations; and (3) to select from all
possible associations, those that are most likely to be
true associations (or at least those most in need of fur-
ther study). In addition, one might add a fourth objec-
tive of a more descriptive nature: to provide for each
exposed cluster an assessment of the ranking of its dis-
ease risks relative to similar nonexposed clusters, re-
cognizing that because of the large number of
possibilities, some exposed clusters will appear to be at
high risk by chance alone.

Descriptive Approaches
Before describing approaches to dealing with the sci-

entific questions, it would be helpful to review the de-
scriptive approaches that were developed to address the
fourth objective in a study by Dr. T. Mack of cancer
incidence in relation to proximity to waste disposal sites
in Los Angeles County (10). For this purpose, census
tracts were selected as the unit of observation (1290 in
number) and classified (a) as "exposed" or not, depend-
ing on whether they contained a disposal site (about 50
in number), and (b) into one of 11 racial/socioeconomic
(SES) strata. The observed incident cancers from 1972
to 1981 in each census tract were counted in each sex
and in about 90 anatomical sites. The observed numbers
were compared with expected numbers on age-adjusted
population (SIR) and proportional incidence (PIR) bases,
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FIGURE 1. Frequency distribution of 133 sample census tracts by
number of cancer sites with observed high risk. Criterion of high
risk: SIR or PIR >2, cancer sites with high prior etiologic plau-
sibility only. Solid box denotes census tract with direct hazardous
risk exposure, open boxes denote surrounding census tracts.

using rates for all Los Angeles County. Anatomical sites
were further classified by the biological plausibility of
any associations with chemical exposures.
The first step of the analysis has been to develop

various definitions of "excess incidence" based on the
size of the SIR and PIR, their lower 95% confidence
limits, the number ofexcess cases (or "attributable num-
ber," AN), and the concordance of the sexes. Frequency
distributions for a random sample of each of the race/
SES strata were then obtained for the number of an-
atomical sites in each plausibility group showing ex-
cesses by these criteria (see, for example, Fig. 1). For
those anatomical sites showing excesses, the SIR was
also plotted against the AN on a scatter diagram. These
frequency distributions of numbers of excess sites, and
scatter diagrams for particular anatomical sites could
then be used for comparison with the corresponding
values for specific exposed census tracts (the indicated
points in Fig. 1).
For many census-tracts, their placement in relation

to other comparable nonexposed tracts was sufficient to
show that their rates were not unusual. Some, however,
do appear to show unusual excesses and are a cause of
concern, requiring further investigation. However, be-
cause of the large number of potential associations (200
exposed tracts x 90 anatomical sites x 2 sexes), and
because of the complexity of the criteria defining "ex-
cesses," it is difficult to evaluate the statistical signifi-
cance of any particular association or to assess whether
the frequency of disposal site associated excesses is any
different from what would be expected by chance. For

this reason, approaches to the first three objectives
enumerated above are still needed.
We are, however, attempting to summarize the pat-

tern as follows. For any particular waste disposal site,
several census tracts may be considered to be exposed;
if there is more than one, a subjective grading of the
degree of potential exposure is assigned to each. Similar
subjective weights are assigned to each anatomical site,
based on a classification of biological plausibility similar
to that used by Buffler (11), and additional weights are
assigned for concordance between the sexes and con-
cordance across exposed census tracts. The percentile
rankings of RRs for those associations showing excess
are then combined, incorporating the various weights,
as described in Appendix 2, resulting in a single sum-
mary score for the disposal site. The absolute value of
the score depends in a complex way on the number of
exposed tracts, the number of anatomical sites, and the
various weights, and cannot be interpreted in isolation.
Because of its complexity, the sampling distribution of
the score can also not be computed analytically, but it
can be simulated by computer. Basically, a race/SES-
stratified sample of sets of the same number of census
tracts is drawn from the pool of comparison tracts, ran-
domly assigned the same exposure values as the actual
exposed tracts, and the summary score recomputed. By
repeated sampling, a distribution of scores is obtained
for comparison against the observed score. The end re-
sult is a percentile rank for the overall pattern of site-
specific excess incidence for each disposal site (11).

Analytical Approaches
Regression Models. To test the global null hypoth-

esis of no exposure-disease associations, an ecological
correlation analysis (9) can be done. Specifically, a Pois-
son-error model (12) of the form

Dii = Eij exp {aj + bjzi}

can be fitted by using linear models packages such as
GLIM (13). However, its validity rests on the assump-
tion that the only sources of variation in the observed
relative risks rij = Dij1Eij are the systematic effects of
measured covariates zi and Poisson errors. As noted
earlier, there is almost certainly additional variation due
to unmeasured risk factors or ascertainment errors, and
the failure to include this source of variation will lead
to an underestimate of the error variance and hence an
overestimate of the degree of significance. This can be
overcome by fitting the marginal likelihood from the
compound Poisson model

Dij - Poisson (Eijpij)
and

pij - Gamma [k, = exp{aj + bjzij
which is given as Eq. (A-4) in Appendix 1. Here, if zi;
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are binary, bi& is simply ln(Di,/Eij) as for the simpler
Poisson model above, but its standard error now cor-
rectly reflects the additional sources of variation. Once
aj, bj, and k are estimated, the EB estimates of p0j are
the residual natural logarithm of residual risk (ln RR)
for all census tracts, after removing the effects of the
measured exposure variables, which could be used for
further hypothesis generation.
For a truly global test, we could constrain bj = b and

confine z to the single variable, "exposed" or not. Never-
theless, to the extent that any associations are specific
to particular anatomical sites or to particular disposal
sites, this global test would have very low statistical
power. On the other hand, to the extent that each an-
atomical site is allowed a different set of coefficients and
many exposure variables are included, the test ceases
to be a global one and the problem of multiple inference
remains.
Estimating the Number of True Positive Associa-

tions. It is therefore appropriate to estimate the num-
ber of "true-positive" associations, to aid in the
interpretation and to guide the selection of associations
to report. Various ways of doing this have been re-
viewed elsewhere (8). Two of the most promising tech-
niques are p value plotting (14) and comparison against
a randomization distribution of p values. Both ap-
proaches are applied to sets of p values, which can be
derived from simple comparisons of observed and ex-
pected counts or from the more sophisticated regression
models described in the previous section.
The first approach assumes that the true distribution

of p values is a mixture of a theoretical uniform distri-
bution for "true negative" associations and some other
distribution for the "true positive" associations, whose
form is unspecified but is assumed to be concentrated
near the "significant" end. By plotting the cumulative
distribution of observed p values and fitting a straight
line through most of the distribution, the point where
that line intersects the vertical axis provides an esti-
mate of the number of true negative associations. In
the example in Figure 2, taken from the occupational
cancer example (8), the estimated number of true pos-
itive associations is about 19 to 24 (out of 218 based on
at least five expected exposed cases). With small num-
bers of cases, however, the assumption of uniformity of
p values under the null hypothesis can break down. Such
nonuniformity was clearly evident when we considered
all 684 associations, which included many with fewer
than one expected exposed case.
On the other hand, exclusion of those associations

based on small numbers may cause one to miss some
large relative risks for rare exposures or rare diseases.
This problem can be overcome by comparing the ob-
served distribution of p values not against a theoretical
uniform distribution but against an empiric distribution
obtained by randomizing the exposures against the dis-
eases (Fig. 3). For example, if each disposal site rep-
resented a separate binary exposure, the randomization
distribution would be simply the observed distribution
of p values for all census tract x anatomical site as-
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FIGURE 2. Cumulative distribution of p values for 218 occupational
associations based on at least five expected exposed cases. Fitted
lines are used to estimate the number of true positive associations.

sociations. Techniques have been described elsewhere
(8) for comparing this distribution to that for the ex-
posed tracts to obtain an integrated measure of sepa-
ration between the two distributions and hence an
estimate of the number of true positive associations. In
the occupational example, the resulting estimate is about
25 of the complete set of 684 associations.

Selecting Associations To Report. The procedures
described above provide an estimate of the number of
true positive associations but cannot identify which as-
sociations are the true ones. Nevertheless, it is clear
that those with larger relative risks or smaller p values
are more likely to represent the true positive associa-
tions, so it is sensible to single them out for reporting
or for further investigation. Various ways of selecting
a subset of associations for reporting have been re-
viewed elsewhere (8), including multiplying p values by
the number of tests performed, splitting the sample for
searching and testing, and Bayesian methods. None of
these approaches seems suitable. Adjustment of p val-
ues produces very low power for detecting true asso-
ciations; splitting the sample offers no advantage over
simply adopting a more conservative significance level
and has poorer power than a single analysis at that more
conservative level; and Bayesian methods require a con-
sensus about explicit prior distributions.
An approach meriting further exploration entails the

use of cost-benefit criteria, not to weigh the advantages
and disadvantages of reporting particular associations,
but to assess the performance of alternative decision
rules. It is unlikely that any consensus could be devel-
oped to weight the potential benefits of particular ex-
posures or the potential costs of particular diseases.
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FIGURE 3. Cumulative distribution of p values for all 684 occupa-
tional associations: (-) observed associations; (--) randomized
associations.

However, it is reasonable to suppose that, on average,
the benefits of reporting a true positive association would
be proportional to the true AN, and the cost ofreporting
a false positive association would be proportional to the
apparent AN. This leads to a theory for evaluating al-
ternative decision rules that is different from the clas-
sical Neyman-Pearson or Bayesian schools, and is a
promising avenue of further research.

In the meantime, our preference is not to use binary
decision rules to decide which associations to report,
but to report all associations together with a ranking
based on EB estimates of the parameter which is con-
sidered to best meet the objectives of the study, e.g.,
the RR or the AN. Suppose we let the parameter of
interest be rij = lnRR for the association between waste
disposal site i and anatomical site j, and assume rij is
normally distributed with true unknown mean pij and
known variances st2. The estimate might be obtained
simply as ln(D,I/Eij) for exposed census tracts, or as b
in the more sophisticated regression models described
above. As a prior distribution, it is reasonable to assume
that there is a finite probability that the true pij = 0;
this leads us to postulate a three-parameter prior
distribution

f(pi) = ab (0) + (1 - a) N(L,ou'2)

where B(x) is the Dirac 8-function and a, , and u2 are
parameters to be estimated. The resulting EB estimate
of bij could then be expressed as RRs or ANs for ranking
purposes. An example of the rankings obtained in these
various ways for a selected subset of associations from
the occupational cancer study is provided in Table 1.

Because the data are preliminary, the exposures are
identified only by code numbers.

Comment
The problem of deciding which disposal sites (or other

exposures) pose a public health threat when many pos-
sible associations are under investigation is difficult.
Part ofthe problem lies in the difference in interpetation
between the disease cluster that was identified by an-
ecdotal evidence and the one that emerged as a result
of systematic investigation. The latter are generally more
informative. Various approaches were outlined above
for identifying clusters that might be investigated to
search for possible causes and for exploring hypotheses
regarding various exposures that have already been
measured. Applications of these approaches to the Los
Angeles County waste disposal site cancer data are de-
scribed in a separate report (10).
The basic study design we are using is very simple

and could easily be implemented by almost any cancer
registry. The statistical methods are less straightfor-
ward, but computer programs can be made available.
The hard part is the interpretation. Empirical Bayes
techniques (even with the incorporation of prior knowl-
edge) are no substitute for scientific judgment and no
cure for faulty data. Before reporting any associations
from such an analysis, one must seriously consider the
biologic credibility of the association, the potential for
bias in the design, the concordance with other data, and
so on. Furthermore, the statistical methods advocated
here, while arguably more powerful than classical fre-
quentist techniques when many hypotheses are to be
considered simultaneously, are still limited in their power
by the available sample sizes. "Nonsignificant associa-
tions" do not necessarily imply no association; power
calculations should always be done before dismissing a
credible hypothesis. Finally, the methods still require
further development. In particular, it would be useful
for the kinds of environmental associations considered
here to be able to incorporate into the EB analysis in-
formation on contiguity, as is proposed, for example, in
the randomization procedure described in Appendix 2.
The reception of the rather convoluted statistical pro-

cedures outlined here by the general public remains to
be seen. A member of an exposed cluster may be con-
vinced that there is a causal link and not be impressed
by the fact that many other hypotheses considered failed
to show an effect. Indeed, the relevance of these other
hypotheses to the interpretation of the particular as-
sociation is not even agreed by scientists (2). Therefore,
the first priority should be to develop a consensus of
scientists on how to deal with the problem of multiple
inference, and then find ways of explaining the approach
convincingly to the public. The first step is to recognize
that the adoption of extremely conservative decision
rules (such as multiplying p values by the number of
tests performed) is not an appropriate response to either
the statistical or the public health problem. Hopefully
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Table 1. Maximum likelihood (ML) and empirical Bayes (EB) estimates of relative risk and
attributable number for selected occupational associations.

Relative risk estimates Attributable number estimates
Cancer site Exposure factor ML EB ML EB
Lung El 1.55 1.43 24.2 19.3
Bladder E2 1.89 1.52 18.6 11.3
Stomach El 1.85 1.48 14.4 8.7
Lung E3 3.88 1.86 24.9 8.0
Kidney E4 1.58 1.39 10.4 7.4
Colon E5 1.88 1.45 13.9 7.3
Prostate E6 2.22 1.54 15.0 6.9
Stomach E7 1.53 1.37 8.1 5.8
Rectum E4 1.90 1.42 8.6 4.5
Colon E8 1.97 1.50 6.6 3.5
Prostate E9 4.71 1.96 11.7 3.1
Bladder E10 2.01 1.42 5.6 2.4
Pancreas E2 3.12 1.51 6.7 1.9
Kidney Ell 2.85 1.47 5.1 1.4
Kidney E12 2.81 1.45 3.8 1.0
Rectum E13 4.76 1.56 5.2 0.9
Lung E14 3.61 1.41 3.1 0.5

some of the approaches outlined above will prove to be
more suitable solutions.

Appendix 1

Implementation of Empirical Bayes
Procedures

Let Dij be the observed number of cases of disease j
in census tract i, Eij the expected number, and zi a
vector of exposure and confounder information on cen-
sus tract i. Let pij represent the true (unknown) relative
risk, incorporating both measured and unmeasured cov-
ariates. Then the likelihood of observing dij is the Pois-
son probability

P(DijlEijpij) = (Eijpij)Dij exp{ - Eijpil}/Dij! (A-1)

The conjugate prior for the Poisson distribution is the
gamma distribution, with parameters k for shape and
-q for scale:

P(p k,,) =-(P(/q)k- exp {-p/q)L\1J~I,Il/ ~ IF(k)

This produces a family of skewed distributions,
mean kq and variance k_q2. To add covariates, or
let -q depend on z while keeping k constant, for exa

Nij= exp{aj + bjzi
To estimate a, b, k, the marginal likelihood L -
can be maximized, where

Lij = fP(DijlEijpij) P(p Iz,,ajj,b,,,k)dp
b F(Dij + k) A

= r(k)r(D + 1))
( Tl Eij)Dij

(1 + -qtEij)Dij+k/

(A-2)

with
ie can
tmple:

Once these estimates have been obtained, the posterior
distribution of pij is p

P(pijl aij,bij,k,Dij Eij,zij)
= P(DijEij,Pij) P(pijlZij,aj,bijk)lLii

= Gamma D[Dl + kgE,u[(1 + -iE (A-5)

The posterior expectation of pij is therefore

(Dij+ k
'j E'ij + (1/-qij)

(A-6)

which is the relative risk parameter, adjusted for z, that
is suggested for ranking.
Where z includes exposure variables of interest, the

MLEs of b can in turn be considered to be a family of
random variables and subjected to EB analysis. For this
purpose, we propose assuming bij are normally distrib-
uted with known variances sii' and mean 1i3 to be
estimated. (If the zi are binary, the bii are simply
ln(D,,Eij) for the subset of census tracts with zi = 1).
For a prior distribution, we postulate that there is a
non-zero probability that pij = 0, so we take

P(Pi,) = as(O) + (1 - a) N(R,u2).
EB estimation of 1ij is described by Thomas et al. (Ap-
pendix 2) (8).

(A-3) Appendix 2
flij Lii

Proposed System for Scoring Excess Rates
Associated with Particular Waste Disposal
Sites

(A-4) Let s represent a particular disposal site and let i =
1, ..., I. indicate the census tracts exposed to it. For
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each exposed census tract, let zi be a grading of its
degree of exposure, and let 1i indicate its race/SES
stratum.
For each anatomical site j =1,..., J, let wj be a

subjective weight to be assigned to the prior credibility
of associations with enivronmental exposures. For each
sex k = 1,2, let Sik denote the set of all anatomical sites
that show "excess" incidence in census tract i by some
criterion. Our primary criterion is:

Either PIR > 1.5 or SIR > 1.5

and

Corresponding Poisson probability < 0.025

Further, let Si. represent the subset of anatomical sites
for which both sexes show excess incidence, and let Cjk
represent the set of exposed census tracts which show
excess incidence at anatomical site j and sex k.
For those anatomical site x sex combinations show-

ing excess incidence, let Pijk be the percentile rank of
RRijk among all census tracts in the same stratum, scaled
so that small p values indicate large RRs.
Our proposed summary score is then

SS = Ei Ek EjSlikZiWJ ln PiJk
+ aEiEjdziwj In (Pij Piw2

+ P EJkEkE(iJ,i2)eCjkZi1Zi22w In (PiikPi,,k)

where a and I are coefficients indicating the weight to
be assigned for concordance between the sexes and con-
cordance across exposed tracts.
The distribution of Ss can be simulated by drawing

repeated stratified samples r of size I, from the popu-
lation of all census tracts, maintaining the same distri-
bution across race/SES strata. Each sampled census
tract would then be randomly assigned an "exposure
score" zi from the scores for the actual exposed census
tracts in the same stratum. For each sample r, the sta-
tistic Si, would be evaluated and the observed Ss would
be compared against the distribution of Ssr.
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